Modern Optical Testing

James C. Wyant
College of Optical Sciences
University of Arizona
jcwyan@optics.arizona.edu
www.optics.arizona.edu
www.optics.arizona.edu/jcwyan
Modern Optical Testing

Day 1, Morning:

Introductory remarks
Basic interferometry and optical testing
 - Two Beam Interference
 - Fizeau Interferometer
 - Twyman-Green Interferometer
 - Laser Based Fizeau
 - Mach-Zehnder Interferometer
 - Typical Interferograms
 - Interferograms and Moiré Patterns
 - Classical techniques for inputting data into computer
Direct phase measurement interferometry and optical testing
 - Phase-Stepping and Phase-Shifting (Integrated Bucket)
 - Basic concept
 - Phase shifters
 - Algorithms
 - Phase-unwrapping
 - Phase shifter calibration
 - Error due to phase shifter and detector nonlinearities, stray reflections, and quantization

Day 1, Afternoon
Direct phase measurement interferometry (continued from above)
 - Spatial Synchronous and Fourier Methods
 - Solving vibration problems
 - Multiple Wavelength and Vertical Scanning (Coherence Probe) Techniques
Measurement of surface quality
 - Lyot Test
 - FECO
 - Nomarski interferometer
 - Phase-shifting interference microscope
Day 2, Morning
Testing flat surface optical components
- Mirrors
- Windows
- Prisms
- Corner cubes
- Diffraction gratings
Measurement of index inhomogeneity
Testing curved surfaces and lenses
- Test Plate
- Twyman-Green Interferometer (LUPI)
- Fizeau (Laser source)
- Shack Cube Interferometer
- Scatterplate Interferometer
- Smartt Point Diffraction Interferometer
- Sommargren Diffraction Interferometer
- Measurement of Cylindrical Surfaces
- Star Test
- Shack-Hartmann Test
Testing of aspherical surfaces
- Description of aspheric surfaces
- Null Test
 o Conventional null optics
 o Holographic null optics
 o Computer generated holograms
- Non-Null Test
 o Lateral Shear Interferometry
 o Radial Shear Interferometry
 o High-density detector arrays
 o Sub-Nyquist Interferometry
 o Long-Wavelength Interferometry
 o Two-Wavelength Holography
 o Two-Wavelength Interferometry
 o Moiré Interferometry

Day 2, Afternoon
Testing of aspherical surfaces (continued from above)
Absolute Measurements
- Flat Surfaces
- Spherical Surfaces
- Surface Roughness
State-of-the-art of direct phase measurement interferometers
Motivation for Course

• If you make optics you have to be able to test the optics because you cannot make optics any better than you can test.

• If you purchase optics you need to test the optics you buy to make sure the optics meet the specs.

• If you let the supplier know you are going to test the optics when you receive them you will get better optics.
References

D. Malacara, Ed.
 Optical Shop Testing

W. Smith
 Modern Optical Engineering

Kingslake, Thompson, Shannon, and Wyant, Ed.
 Applied Optics and Optical Engineering, Vols. 1-11

Optical Society of America
 Optics Infobase

SPIE
 Digital Library